Micotherapy Glico

Micotherapy Glico è un integratore che sfrutta la sinergia unica del fungo Coprinus comatus di origine biologica e di piante, appositamente formulato per favorire la riduzione degli eccessivi livelli di zucchero nel sangue, favorire la gestione del corretto peso corporeo, correggere situazioni di alterata omeostasi del glucosio e favorire la riduzione dello stress ossidativo

Formato

90 capsule

Mdo d'uso

una capsula 3 volte al giorno, un’ora prima dei pasti

Proprietà

Micotherapy Glico è composto da Coprinus comatus, un fungo ricco in Vanadio, che favorisce il controllo della glicemia, utile come supporto in condizioni di alterato controllo del glucosio ematico e piante, come la Gimnema e la Banaba, che rispettivamente controllano l’eccessivo assorbimento degli zuccheri e ne migliorano l’utilizzo a livello cellulare, oltre a Rosa canina, una fonte naturale di Vitamina C, Zolfo e Cromo, utili per garantire un adeguato supporto alla formazione del Glutatione, favorire l’azione anabolica dell’insulina, migliorare il metabolismo di grassi e carboidrati e contribuire a regolarizzare i livelli glicemici riducendo naturalmente il senso di fame e la “voglia di dolci”  

Effetti principali

  • Utile in caso di diabete di tipo 2 e di resistenza insulinica

  • Utile in caso di iperglicemia e di eccessivo desiderio di cibi dolci

Informazioni nutrizionali

Componenti

Per dosaggio giornaliero

Coprino sporophorum 600 mg
Gymnema estr. secco 300 mg
Apporto acido gimnemico 335 mg
Banaba estr. secco 300 mg
Apporto acido corosolico 3 mg
Rosa canina estr. secco 90 mg
Apporto di vitamina C 63 mg
Metilsulfonilmetano (MSM) 30 mg
Cromo 200 mcg
Reperibilità prodotto

Codice parafarmaco: A923582124

Inserito nel registro degli integratori n°: codice 62495

Note:

• Asatiani, Mikheil D., et al. The Shaggy Inc Cap medicinal mushroom, Coprinus comatus (OF Mull.: Fr.) Pers.(Agaricomycetideae) substances interfere with H 2 O 2 induction of the NF-κB pathway through inhibition of IκBα phosphorylation in MCF7 breast cancer cells. International journal of medicinal mushrooms 13.1 (2011).

• Bailey, C. J., et al. Effect of Coprinus comatus on plasma glucose concentrations in mice. Planta medica 50.06 (1984): 525-526.

• C Han, B et al., Vanadium uptake by biomass of Coprinus comatus and their effect on hyperglycemic mice. Biol Trace Elem Res, Jul 2008; 124(1): 35-9.

• CHan, J et al., Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol, Jan 2006; 20(3): 191-6.

• Chunchao H et al., Vanadium uptake by biomass of Coprinus comatus and their effect on hyperglycemic mice. Biological trace element research 124.1 (2008): 35-39.

• Ding, Zhongyang, et al. “Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats.” Food chemistry 121.1 (2010): 39-43.

• Dotan, Nesly, Solomon P. Wasser, and Jamal Mahajna. The culinary-medicinal mushroom Coprinus comatus as a natural antiandrogenic modulator. Integrative cancer therapies 10.2 (2011): 148-159.

• G. Zhou and C Han. The co-effect of vanadium and fermented mushroom of Coprinus comatus on glycaemic metabolism. Biol Trace Elem Res, Jul 2008; 124(1): 20-7.

• Gao Z. eta l., Characterization and anti-diabetic nephropathic ability of mycelium polysaccharides from Coprinus comatus. Carbohydr Polym. 2021 Jan 1;251:117081.

• Li, Bo, et al. Glucose lowering activity of Coprinus comatus. Agro Food Industry Hi-Tech 21.3 (2010): 15-17.

• Wang G. et al., Comparison of effects of vanadium absorbed by Coprinus comatus with those of inorganic vanadium on bone in streptozotocin-diabetic rats. Biol Trace Elem Res. 2012 Dec;149(3):391-8. 

Lv Y. et al., Comparison of hypoglycemic activity of trace elements absorbed in fermented mushroom of Coprinus comatus. Biol Trace Elem Res. 2009 Nov;131(2):177-85.

• Wang G. et al., Systemic treatment with vanadium absorbed by Coprinus comatus promotes femoral fracture healing in streptozotocin-diabetic rats. Biol Trace Elem Res. 2013 Mar;151(3):424-33

• Yingtao Lv et al., Comparison of Hypoglycemic Activity of Trace Elements Absorbed in Fermented Mushroom of Coprinus comatus. Biol Trace Elem Res, Mar 2009Abstract

• Zaidman, Ben-Zion, et al. Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Molecular biology reports 35.2 2008: 107-117.

• Zenkova, Valentina A., et al. Antimicrobial activity of medicinal mushrooms from the genus Coprinus (Fr.) SF Gray (Agaricomycetideae). International Journal of Medicinal Mushrooms 5.1 2003.

• Zhou, Guangtian, and Chunchao Han. The co-effect of vanadium and fermented mushroom of Coprinus comatus on glycaemic metabolism. Biological trace element research 124.1 (2008): 20-27.

• Derosa G. et al., An Evaluation of a Nutraceutical with Berberine, Curcumin, Inositol, Banaba and Chromium Picolinate in Patients with Fasting Dysglycemia. Diabetes Metab Syndr Obes. 2020 Mar 3;13:653-661.

• Kim SJ. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages. BMB Rep. 2016 May;49(5):276-81.

• Klein G. et al., Antidiabetes and Anti-obesity Activity of Lagerstroemia speciosa. Evid Based Complement Alternat Med. Dec;4(4):401-7.

• Kouzi SA. Et al., Natural supplements for improving insulin sensitivity and glucose uptake in skeletal muscle. Front Biosci (Elite Ed). 2015 Jan 1;7:94-106.

• McKennon SA. Non-Pharmaceutical Intervention Options For Type 2 Diabetes: Diets And Dietary Supplements (Botanicals, Antioxidants, and Minerals). 2018 editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.

• N Stohs SJ. et al., A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytother Res. 2012 Mar; 26(3):317-24. 

• Al-Romaiyan A. et al., A novel Gymnema sylvestre extract protects pancreatic beta-cells from cytokine-induced apoptosis. Phytother Res. 2020 Jan;34(1):161-172.

• Gholap S and Kar A. Effects of Inula racemosa root and Gymnema sylvestre leaf extracts in the regulation of corticosteroid induced diabetes mellitus: involvement of thyroid hormones. 2003 Pharmazie 58 (6): 413–415. 

• Khan J. Et al., Metabolic differentiation and quantification of gymnemic acid in Gymnema sylvestre (Retz.) R.Br. ex Sm. leaf extract and its fermented products. Phytochem Anal. 2020 Jul;31(4):488-500. 

• Kiem PV et al., Five New Pregnane Glycosides from Gymnema sylvestre and Their alpha-Glucosidase and alpha-Amylase Inhibitory Activities. Molecules. 2020 May 28;25(11):2525.

• Li Y. et al., Gymnemic Acid Ameliorates Hyperglycemia through PI3K/AKT- and AMPK-Mediated Signaling Pathways in Type 2 Diabetes Mellitus Rats.

• Persaud SJ et al., Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability”. J Endocrinol 1999; 163 (2): 207–212

• Semwal DK et al., Protective and therapeutic effects of natural products against diabetes mellitus via regenerating pancreatic beta-cells and restoring their dysfunction. Phytother Res. 2020 Sep 28. 

• Shanmugasundaram KR et al., Insulinotropic activity of G. sylvestre, R.Br. and Indian medicinal herb used in controlling diabetes mellitus. Pharmacol Res Commun 1982; 13 (5): 475–486

• Sugihara Y. et al., Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. Journal of Asian natural products research 2000;2(4):321-7.

 • Brownlee M, et al., Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications.” N Engl J Med (1988) 318: pp. 1315-1321.

• Dakhale G. N., et al.,  Supplementation of vitamin C reduces blood glucose and improves glycosylated hemoglobin in type 2 diabetes mellitus: a randomized, double-blind study,” Adv Pharmacol Sci, vol. 2011, p. 195271, 2011. 

• Julie C. Will and Tim Byers. Does Diabetes Mellitus Increase the Requirement for Vitamin C?. Nutrition Reviews, Volume 54, Issue 7, July 1996,

• Krone C. A. and Ely J. T. A.. Vitamin C and Glycohemoglobin Revisited. Clinical Chemistry, vol. 47, no. 1, p. 148–148, Jan. 2001.

• Sanz-González SM et al., Clinical and Molecular-Genetic Insights into the Role of Oxidative Stress in Diabetic Retinopathy: Antioxidant Strategies and Future Avenues. Antioxidants (Basel). 2020 Nov 9;9(11):E1101.

• Shi L. et al., Ascorbic acid supplementation in type 2 diabetes mellitus: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2020 Nov 6;99(45):e23125.

• G.Atmaca, “Antioxidant Effects of Sulfur-Containing Amino Acids,” Yonsei Medical Journal, Vol. 45,5,776-788,2004.

• Eun Seong J. et al., Sulfur Compounds Inhibit High Glucose-Induced Inflammation by Regulating NF-κB Signaling in Human Monocytes. 2020 May; 25(10): 2342

• Manna P, et al. Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications. Curr Diabetes Rev. 2013 May;9(3):237-48

• Asbaghi O. et al., Effects of chromium supplementation on glycemic control in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2020 Jul 28;161:105098.

• Molz P. et al., Potential Ameliorative Effects of Chromium Supplementation on Glucose Metabolism, Obesity, and Genomic Stability in Prediabetic Rat Model. Biol Trace Elem Res. 2020 Jul 25. 

• Östman E. et al., A novel nutritional supplement containing amino acids and chromium decreases postprandial glucose response in a randomized, double-blind, placebo-controlled study. PLoS One. 2020 Jun 24;15(6):e0234237. 

• Khodavirdipour A. et al., Chromium Supplementation; Negotiation with Diabetes Mellitus, Hyperlipidemia and Depression. .J Diabetes Metab Disord. 2020 Mar 5;19(1):585-595.

Linee prodotti